PRELIMINARY SYNTHESIS OF CALCIUM CARBONATE USING CO2 BUBBLING METHOD FOR BIOMEDICAL APPLICATION
N.H. Azzakiroh¹, Z. Hasratiningsih², I.M. Joni³, A. Cahyanto²

COMPARISON OF THE DIAMETRAL TENSILE STRENGTH OF BONE CEMENT BASED ON CARBONATE APATITE BETWEEN MICRON AND NANO PARTICLES CALCIUM CARBONATE AS A PRECURSOR
L. Arianti¹, E. Karlina², A. Cahyanto²

APATITE CEMENT VERSUS CARBONATE APATITE CEMENT
A. Cahyanto¹*, M.N. Zakaria²

BIOCERAMICS MATERIAL: LIFTING HOPE IN ENDODONTICS 26
M. N. Zakaria¹, A. Cahyanto² 26

REVIEW ON BIOCERAMIC NANOFIBER USING ELECTROSPINNING METHOD FOR DENTAL APPLICATION 33
N. Djustaina*, Y. Faza, A. Cahyanto 33

MICROLEAKAGE IN COMPOSITE RESTORATION DUE TO THE APPLICATION OF CARBAMIDE PEROXIDE BLEACHING MATERIAL WITH A CONCENTRATION OF 10%, 15% AND 20% 42
Renny Febrida¹,a*, Elin Karlina¹,b , Oksania Wahyuni Putri²,c 42

RECONSTRUCTION PROCEDURE USING ELASTOMER PUTTY MATERIALS, WHAT TYPE TO CHOOSE? 49
V. Takarini¹, E. Karlina¹, R. Febrida¹, Z. Hasratiningsih¹ 49

EFFECT OF BAGGASE FIBER (Saccharum officinarum L.) ON FLEXURAL STRENGTH OF COMPOSITE RESIN 56
IT. Amirah*, M. Hudiyati**, MC. Negara** 56

THE KNOWLEDGE OF BPJS HEALTH AMONG BANDUNG INFORMAL SECTOR WORKERS AS BPJS HEALTH CARD OWNER
1Agata Ayu Pratiwi, 1Cucu Zubaedah, and 1Sri Susilawati

ORAL HYGIENE INDEX OF QUADRIPLEGIC ATHLETES IN BANDUNG
Mochamad Nur Ramadhani¹, Riana Wardani² and Cucu Zubaedah²
Comparison of the diametral tensile strength of bone cement based on carbonate apatite between micron and nano particles calcium carbonate as a precursor

L. Arianti¹, E. Karlina², A. Cahyanto²

¹Graduate Student at Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
²Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia

ABSTRACT

INTRODUCTION: Bone cement is inorganic material which can be used for bone substitute materials. One of the bone cement which has been attracted much attention in orthopedic and dental fields is apatite cement. As a result of apatite cement could transform to carbonate apatite (CO₂Ap) after implanted in the body, high bone replacement ability could be developed. The current study about diametral tensile strength (DTS) value of bone cement using calcium carbonate (CaCO₃) as one of the component of CO₂Ap cement is limited to submicron particles. There have been no data using CaCO₃ reduced into nano particles. Meanwhile, the studies about reduction of CaCO₃ particles into nano particles have been found by the precipitation and ultrafine grinding. Objective: The aim of this study is to investigate the DTS value of bone cement based on CO₂Ap between micron and nano particles using CaCO₃ as a precursor. Materials and methods: The powder phase of micron particles of CaCO₃ or nano particles of CaCO₃ which was milled by beads mill combined with dicalcium phosphate anhydrous (CaHPO₄) was mixed with 1 mol/L of disodium hydrogen phosphate (Na₂HPO₄) solution in 0.5 of liquid to powder ratio. The paste was packed into a split Teflon mold, covered with glass slide and kept at 37°C and 100% relative humidity for 24 hours. Results: The result showed that the diametral tensile strength of the set CO₂Ap cement using micron particles of CaCO₃ was 3,7787 MPa and nano particles of CaCO₃ was 2,4013 MPa. The data was analyzed statistically with t independent test (α=0.05) which showed that the DTS between micron and nano particles of CaCO₃ was statistically significant. Conclusion: In conclusion, the bone cement based on CO₂Ap using micron particles of CaCO₃ has higher DTS value than bone cement based on CO₂Ap with nano particles of CaCO₃.

Keywords: Diametral tensile strength, bone cement, carbonate apatite, calcium carbonate
INTRODUCTION

Bone is one of important parts in our body that support our bodies and protect vital organs such as heart, lungs, etc. Bone has limitation for self repair. When large defect bone occurs, so the repair processed need an alternative materials as a bone graft [1]. Autograft is one of the bone grafting materials which is still considered as the “golden standard” compared to other grafting materials since it shows high remodelling process perfomance. This material is harvested from healthy parts of the bones of the same patient. However, the availability of the healthy bone in our body is limited and this may involve massive blood loss, sepsis, and also pain [1, 2]. Therefore, the use of synthetic graft can be used as an alternative material for bone substitute [3].

Bone cement is a synthetic bone graft material (alloplastic) which can be used for bone substitute materials [4]. One of the bone cement which has been attracted much attention in orthopedic and dental fields is apatite cement (AC) [5]. The AC could transform to carbonate apatite (CO$_3$Ap) when implanted in the body and high bone replacement ability could be developed. Another advantages possessed by AC lies in its ability to show good osteoconductivity and excellent tissue response [6].

The candidates of starting material for fabrication of CO$_3$Ap cement are calcium carbonate (CaCO$_3$) and dicalcium phosphate anhydrous (CaHPO$_4$) [6]. Cahyanto et al. reported that CO$_3$Ap cement consisted of one of the polymorph of CaCO$_3$ which is vaterite that has the smallest particle size with the highest diametral tensile strength (DTS) [7]. However, the current study about DTS value of bone cement using CaCO$_3$ as one of the component of CO$_3$Ap cement was limited. Furthermore, there was no data using CaCO$_3$ reduced into nanoparticles as a precursor for CO$_3$Ap cement. Meanwhile, the study about reduction of CaCO$_3$ particles into nanoparticles has been found by the precipitation and ultrafine grinding [8]. The aim of this study was to investigate the DTS value of bone cement based on CO$_3$Ap between micron and nanoparticles using CaCO$_3$ as a precursor.

METHODS

This research was conducted by CO$_3$Ap based bone cement using micron and nanoparticles of CaCO$_3$. The nanoparticles of CaCO$_3$ were derived on the basis of previous report [8]. In brief, 1.15 mL of Tween 80 as the surfactant was mixed into 568.1 mL aquasted and 5.75 g of CaCO$_3$ using magnetic stirrer. The grinding was conducted by beads mill for 3 hours at the slurry concentration of 5%, bead size of 300 μm, and the rotor speed 3000 rpm. The obtained particles were collected by dried at 40°C for 24 hours. Finally, each micron particles of CaCO$_3$ and nanoparticles of CaCO$_3$ were mixed with CaHPO$_4$ homogeneously on weight powder ratio 40:60 to obtain CO$_3$Ap powder.

Powder phase of CaCO$_3$ combined CaHPO$_4$ were mixed with liquid phase of 1 mol/L Na$_2$HPO$_4$ using a spatula at a L/P ratio 0.5 until it became a paste. The paste was packed into Teflon mold (6 mm in diameter x 3 mm in height). Both ends of the mold was covered